
Unified Online/Offline Storage Buffer
for Single-Phase ProtoDUNE

B. Viren

August 10, 2016

Abstract

The Single-Phase (SP) ProtoDUNE detector must provide for a local storage buffer suf-
ficient for at least three days of data. The note gives designs for this storage based on close
unification between online and offline processes.

Contents

1 Overview 2

2 Data Rates 2

3 DAQ Throughput and Multiplicity 3
3.1 DAQ Model . 4
3.2 An Example . 6

4 DAQ Options 6
4.1 Immediate Write . 6
4.2 Sorted . 7
4.3 Decoupled Write . 7
4.4 Preprocessed . 8

1

1 Overview

This document describes a spectrum of possible designs for a unified online/offline storage buffer for
the Single-Phase (SP) ProtoDUNE detector. This buffer is required to potentially cache as much
as three days worth of nominal data acquisition, as required by CERN. During nominal running it
serves as a staging area for data transfer to CERN EOS disk system. This transfer is expected to
be performed by the Fermilab File Transfer System (F-FTS or just FTS).

The expected data rates are such that commodity hardware will present a bottleneck unless
the buffer maintains a parallel architecture. Given that the DAQ itself is parallel in nature, these
designs for the buffer attempt to mesh with the design of the DAQ. This tight integration leads to
an overall leaner system but will require close attention by both online and offline members.

More than one design is considered as there are a few crucial requirements that have come up
which have strong impact on the design and which can be satisfied in more than one way. In
particular, do we require:

• sequential trigger numbers in a raw data file?

• contiguous readout fragments for a given trigger in a raw data file?

• the DAQ satisfy these two requirements or do we transfer them to the offline?

In the following sections, a review of our current understanding of the SP data rates is given,
then the DAQ is described at a high level. Finally, a number of optional designs for a unified
online/offline buffer are described.

2 Data Rates

The “protoDUNE/SP Data Scenarios” spreadsheet v51 describes three possible running conditions
and estimates for their resulting data volumes and rates and interpretations in terms of network and
disk bandwidth. It also includes estimates for non-beam trigger for acquiring additional cosmic-µ
data. Some highlights of these estimates for the mid-range (so called “Goldilocks”) scenario are in
Table 1.

Trigger rate 10 Hz
Spill time 4.8 s
Cycle time 16.8 s
Readout time 5 ms
#APA 3
Readout 115 MB
Compression ×5
Instant rate 230 MB s−1

Average rate 66 MB s−1

3-Day volume 17 TB

cosmic-µ ×2

Table 1: Parameters governing data rates and volumes for the “Goldilocks” (v5) scenario. See text.

1http://docs.dunescience.org:8080/cgi-bin/ShowDocument?docid=1086&version=5

2

http://docs.dunescience.org:8080/cgi-bin/ShowDocument?docid=1086&version=5

The current assumption is that for every beam trigger one non-beam trigger (cosmic-µ in the
table) be acquired during the time when the beam is not spilling. This assumption represents a
doubling of the data rates and volumes presented in Table 1. The instant and average rates are
those for when the beam is spilling or if the rate is amortized over the entire beam cycle.

At face value this data scenario is very modest but two things to note. First, even with these
modest numbers some level of parallelism is needed to sustain the expected bandwidth on commodity
hardware (Gbps network interfaces, 50 MB s−1 disk). The second issue is that the scenario is based
on uncertain parameters which are known to lead to underestimates. The scenario is expected to
grow substantially as they are better known. In particular:

• A 10 Hz trigger rate is assumed although the beam can deliver hundreds of Hz of particles.

• Trigger efficiency and purity is assumed to be 100% meaning exactly 5M triggers are needed
to satisfy the run plan.

• It is assumed the SP detector will achieve a noise level no worse than MicroBooNE and thus
can also achieve the associated compression factor of ×5.

One can imagine one or all of the following extreme problems might arise:

• The trigger rate goes to 50 Hz in order to “catch up” with the run plan after some delays

• The triggering ends up being only 50% pure requiring acquisition of 10M triggers.

• The noise level achieved is closer to that of the 35t causing compression factor to fall to ×2.

If all these extreme contingencies were to occur together their affect on the buffer is estimated as
in Table 2.

volume ×10 3.3 PB total raw data
writes ×25 13 Gbps, 65 parallel HDDs,
buffer ×25 850 TB, 3-days

Table 2: Worse case scenarios where trigger rate, trigger selection and noise are such that they all
increase the amount of data.

As we better understand 35t and MicroBooNE data as well as the CERN beam and its in-
strumentation it is expected these extremes will come down in scale. If we take them as is they
represent a range of scale of more than order of magnitude. The buffer (and DAQ) designs should
scale across at least this range. We must plan to implement a system that is adequate for the “worse
reasonable case” as the actual data rates will not be known until SP begins commissioning. Such
concrete planning and procurement must follow. For this document we limit the discussion to just
the design.

3 DAQ Throughput and Multiplicity

This section describes how the DAQ is modeled in order to understand its throughput and the
node multiplicity. The basic DAQ up to event building is described and the model is applied to the
nominal data scenario.

3

3.1 DAQ Model

The ProtoDUNE SP DAQ is as an asynchronous, distributed and networked data processing appli-
cation. At a high level of abstraction it can be seen as a linear pipeline of functions fi. However,
each function fi has a number Ni of instances or nodes which run independently and concurrently.
These nodes are arranged topologically into a common layer. The sequential layers then make up
the pipeline. One node may receive as input data from one or more nodes in a prior layer and may
send its output to nodes in a subsequent layer.

The pipeline can also be considered a directed acyclic graph with vertices identified with the
functions and edges consisting of data transfer paths. Physically, a vertex are mapped to a service
running on computer host and an edge is mapped to a communication link. The layered topology
makes the graph similar to but with functionality different than that of an artificial neural network.

Digital
Electronics

Board
Readers

Event
Builders

SSP1 SBR1

SSP2 SBR2

TPC1 TBR1

TPC2 TBR2

EB1

...

EBN

Network
Switch

Figure 1: Some fraction of the upstream portion of the DAQ.

The connectivity of a portion of the upstream part of the DAQ is illustrated in a general way
in Fig. 1. A node in the Digital Electronics (DE) layer provides the source of data for one portion
of the detector, either optical (SSP) or wire waveforms (TPC). These fragments enter the DAQ
via Board Readers (BR). Each fragment from a common trigger carries a common trigger number
which is indicated in the diagram by a colored arrow. Based on that number, fragments from the
same trigger are sent to a common event builder (EB) node for assembly. In the figure, all fragments
from a “black trigger” is sent to EB1 and all fragments from a “blue trigger” are sent to EBN.

The number of nodes in the BR layer is determined by channel multiplicity of the detector elec-
tronics that are to be read out. Given the nature of the DAQ application, there is freedom to choose
the multiplicities of the Event Builder and subsequent layers discussed below. The optimum choice
is a balance of performance (more nodes) and cost (fewer nodes). For a given set of assumptions

4

a number of minimum requirements can be derived. A single DAQ node is modeled generally and
independently from its function in terms of its:

• Bin, input bandwidth

• Sin, input data size (per trigger)

• τ , processing time (per trigger)

• Sout, output data size (per trigger)

• Bout, output bandwidth

These five terms imply a synchronous processing model:

1. The node receives all its input data.

2. The node processes input to produce output.

3. The node sends all its output data.

However, given suitable data structures and algorithms, a node may begin sending output data
while it is still receiving input data for the same trigger. This potential optimization is neglected
in this model. Also ignored are effects due to fluctuations in data size and processing time. A final
caveat is that the model so far does not associate input and output to network interface hardware.
If multiple nodes are hosted on a common computer, care is needed to properly account for shared
resources.

A few relations between these parameters are made obvious. Data is conserved between sequen-
tial layers with node counts Ni and Nj respectively so that,

Ni × Si,out = Nj × Sj,in (1)

A maximum throughput of a node can be defined as the maximum number of triggers per second it
can allow to pass. It is defined by its bottleneck throughput which is either due to input, processing
time or output:

Tmax = min(Bin/Sin, 1/τ, Bout/Sout) (2)

In order for any given layer i with number Ni nodes to not present a bottleneck to the data flow
its nodes must have a maximum throughput greater than the detector trigger rate Rtrig:

Ti,max > Rtrig/Ni (3)

The arrows in Fig. 1 indicate logical data flow between nodes. Actual data flow between some
layers, such as between BR and EB nodes, is concentrated through a network switch. In order to
not pose a bottleneck a switch between the two layers must pass a bandwidth of

Bswitch,ij > rtrig × Si,out = rtrig × Sj,in (4)

where the two S give equivalently the size of data corresponding to a single trigger and which is
passing out of layer i and in to j. Note that this inequality is independent from the number of
nodes in either layers. The requirement is on the switch fabric and the requirement on the per-port
bandwidth is lower by a factor 1/Ni.

5

3.2 An Example

For the data scenario considered, we can require that the switch between BR and EB layers must
provide at least enough bandwidth to accommodate the nominal peak rate which occurs during the
spill. This is 230 MB s−1 or just under 2 Gbps. If transmission of beam trigger data is averaged
over the beam cycle and including non-beam triggering then the minimum switch fabric bandwidth
is relaxed to just above 1 Gbps.

For the EB layer to not present a bottleneck each term in the min function of Eq. 2 must satisfy
Eq. 3. Assuming no compression and a commodity NIC providing 1 Gbps full-duplex the input
and output bandwidth terms indicate NEB ≥ RtrigSevt/B = 2 in order to pass 230 MB/ sec. If this
number of nodes is accepted it places a requirement back on to the EB node to complete processing
of one trigger in τEB ≤ NEB/Rtrig = 200 ms. If the event building must take longer than this then
it becomes the bottleneck and either the process must be sped up or more nodes are required.

4 DAQ Options

Starting at the EB layer of Fig. 1 a number of options are considered that extend the distributed
DAQ to meet the buffer while not creating a bottleneck. They differ in trade offs of node multiplicity
and features.

4.1 Immediate Write

The simplest extension of the basic upstream DAQ configuration is to add local disks and an instance
of F-FTS to the computers hosting the EB services. This option is termed Immediate Write and
the salient parts are illustrated for a single host in Fig. 2.

EB

HDD1

...

HDDN

FTS1

SATA
Bus

Figure 2: The Immediate Write option to connect one EB to local buffer disk storage.

In this local context of a single host the same basic model can be applied. The “nodes” here
include a process that writes the data to a storage unit (HDD) and then makes this data available
to F-FTS, which also fits in to the model as a node. At its simplest, this HDD “process” is nothing
more than write() and read() functions in EB and FTS, respectively. However, FTS requires a
metadata file including a checksum and it is desirable to produce both before the file is written to
avoid extra HDD I/O.

The switch between the three layers in this case is the host SATA bus which provides a greater
bandwidth than the a commodity 1 Gbps NIC (SATA III provides 6 Gbps). Some modern HDD

6

can sink or source 1 Gbps but most can not do both simultaneously. At least two HDD are assumed
in order to meet the more modest requirement of minimum HDD bandwidth of 50 MB s−1 and to
avoid simultaneous reads and writes on the same media.

While this design is simple and requires only minimal extra hardware it has the following con-
sequences:

• Interlaced triggers. The events from the EB node that are saved to disk will not be sequential
because the EB does not receive sequential triggers from the upstream BRs. While one EB
is building an event from trigger i another EB node will be building trigger i+ 1. See Sorted
and Preprocessed options for an alternative.

• Tight coupling. The EB processing and FTS-related processing (metadata and checksumming)
may lead to CPU contention. Placing three functions (EB, storage, FTS) on one host means
the failure of any one likely means the failure of all. See Decoupled Write option for an
alternative.

4.2 Sorted

It is convenient to have sequential triggers in raw data files but it is becoming less and less required
as experiments take higher rate data. A naive approach to providing sorted raw data files is to
concentrate all strings into one point. This requires a massive monolithic computing element and
this idea is discarded.

Another approach is to use some intelligent upstream routing to collate built events into sequen-
tial order. This requires an extra layer of Event Sorter (ES) nodes. These nodes must maintain
a buffer in memory of some number of events which can be as many as what an entire file holds.
However, this load can be spread across multiple ES nodes so that multiple events in multiple files
need not be cached in a single memory system. As detailed next, the resulting files will themselves
still be interlaced but this out-of-order issue is erased through the use of a file catalog.

The ES nodes work in partnership with the EB nodes. The EB nodes are extended to accept a
configuration parameter which is the number of triggers in to be saved in each file. They further have
a static function which maps this configuration parameter and the current trigger number to the
address of an ES node. An obvious example is that to determine the ES index via integer division
and modulus. Then, for NES nodes and each file holding Nfile triggers an EB node determines
which ES to send its data by (i/Nfile)%NES.

For writing to buffer the ES node can reside on host as the EB node in Immediate Write or in
Decoupled Write

4.3 Decoupled Write

This variant extends Immediate Write to move the EB (or ES) node off of the same host as the
storage. This requires a new service to accept data from the EB (or ES) node and write it to disk.
This new service can be based on artDAQ which makes it part of the DAQ proper. Alternatively,
it can use another protocol such as Xrootd in which case the EB (or ES) must be developed to
speak this protocol. If additional processing is required (such as metadata file production and
checksumming) as the data is written then an artDAQ implementation for this node is likely best.

7

4.4 Preprocessed

If the requirement of sequential triggers is required then it can be accomplished in an offline context.
The essential idea is that an offline process close to the source of the interlaced data files reads in
multiple stream, performs deinterlacing and writes out sequential files. This will be a highly I/O
bound and data intensive job.

It does open an opportunity to add a modest amount of processing in order to reap a reduction
in the output data volume. The resulting files can then be sent to distributed processing without
incurring I/O penalties. This additional processing might be the following:

1. DAQ write interlaced events from EB (or even interlaced fragments directly from BR)

2. Archive interlaced files via F-FTS

3. Infrequently preprocess the as:

(a) Read N interlaced files as parallel streams and deinterlace.

(b) Apply software noise removal.

(c) Apply detector response deconvolution.

(d) Apply thresholding saving only signals above.

(e) Write and archive a single, much smaller file.

4. Production reconstruction processing on this reduced file.

This processing requires discrete Fourier transforms and their inverse to be run on each raw FADC
waveform. The full reconstruction steps are estimated to require 5 − 10× more CPU than these
steps. The size reduction needs study but is roughly estimated to be 10−100×. Even in the absence
of interlacing, this is a very advantageous approach.

8

	Overview
	Data Rates
	DAQ Throughput and Multiplicity
	DAQ Model
	An Example

	DAQ Options
	Immediate Write
	Sorted
	Decoupled Write
	Preprocessed

